Home | About | Sematext search-lucene.com search-hadoop.com
NEW: Monitor These Apps!
elasticsearch, apache solr, apache hbase, hadoop, redis, casssandra, amazon cloudwatch, mysql, memcached, apache kafka, apache zookeeper, apache storm, ubuntu, centOS, red hat, debian, puppet labs, java, senseiDB
 Search Hadoop and all its subprojects:

Switch to Plain View
HBase >> mail # user >> Optimizing Multi Gets in hbase


+
Varun Sharma 2013-02-18, 09:57
+
Anoop Sam John 2013-02-18, 10:49
+
Viral Bajaria 2013-02-18, 10:49
+
Nicolas Liochon 2013-02-18, 10:56
+
ramkrishna vasudevan 2013-02-18, 11:07
+
Michael Segel 2013-02-18, 12:52
+
lars hofhansl 2013-02-19, 01:48
+
Varun Sharma 2013-02-19, 06:45
+
lars hofhansl 2013-02-19, 08:02
Copy link to this message
-
Re: Optimizing Multi Gets in hbase
Looking at the code, it seems possible to do this server side within the
multi invocation: we could group the get by region, and do a single scan.
We could also add some heuristics if necessary...

On Tue, Feb 19, 2013 at 9:02 AM, lars hofhansl <[EMAIL PROTECTED]> wrote:

> I should qualify that statement, actually.
>
> I was comparing scanning 1m KVs to getting 1m KVs when all KVs are
> returned.
>
> As James Taylor pointed out to me privately: A fairer comparison would
> have been to run a scan with a filter that lets x% of the rows pass (i.e.
> the selectivity of the scan would be x%) and compare that to a multi Get of
> the same x% of the row.
>
> There we found that a Scan+Filter is more efficient that issuing multi
> Gets if x is >= 1-2%.
>
>
> Or in other words, translating many Gets into a Scan+Filter is beneficial
> if the Scan would return at least 1-2% of the rows to the client.
> For example:
> if you are looking for less than 10-20k rows in 1m rows, using muli Gets
> is likely more efficient.
> if you are looking for more than 10-20k rows in 1m rows, using a
> Scan+Filter is likely more efficient.
>
>
> Of course this is predicated on whether you have an efficient way to
> represent the rows you are looking for in a filter, so that would probably
> shift this slightly more towards Gets (just imaging a Filter that to encode
> 100k random row keys to be matched; since Filters are instantiated store
> there is another natural limit there).
>
>
> As I said below, the crux of the matter is having some histograms of your
> data, so that such a decision could be made automatically.
>
>
> -- Lars
>
>
>
> ________________________________
>  From: lars hofhansl <[EMAIL PROTECTED]>
> To: "[EMAIL PROTECTED]" <[EMAIL PROTECTED]>
> Sent: Monday, February 18, 2013 5:48 PM
> Subject: Re: Optimizing Multi Gets in hbase
>
> As it happens we did some tests around last week.
> Turns out doing Gets in batches instead of a scan still gives you 1/3 of
> the performance.
>
> I.e. when you have a table with, say, 10m rows and scanning take N
> seconds, then calling 10m Gets in batches of 1000 take ~3N, which is pretty
> impressive.
>
> Now, this is with all data in the cache!
> When the data is not in the cache and the Gets are random it is many
> orders of magnitude slower, as the Gets are sprayed all over the disk. In
> that case sorting the Gets and issuing scans would indeed be much more
> efficient.
>
>
> The Gets in a batch are already sorted on the client, but as N. says it is
> hard to determine when to turn many Gets into a Scan with filters
> automatically. Without statistics/histograms I'd even wager a guess that
> would be impossible to do.
> Imagine you issue 10000 random Gets, but your table has 10bn rows, in that
> case it is almost certain that the Gets are faster than a scan.
> Now image the Gets only cover a small key range. With statistics we could
> tell whether it would beneficial to turn this into a scan.
>
> It's not that hard to add statistics to HBase. Would do it as part of the
> compactions, and record the histograms in some table.
>
>
> You can always do that yourself. If you suspect you are touching most rows
> in a table/region, just issue a scan with a appropriate filter (may have to
> implement your own filter, though). Maybe we could a version of RowFilter
> that match against multiple keys.
>
>
> -- Lars
>
>
>
> ________________________________
> From: Varun Sharma <[EMAIL PROTECTED]>
> To: [EMAIL PROTECTED]
> Sent: Monday, February 18, 2013 1:57 AM
> Subject: Optimizing Multi Gets in hbase
>
> Hi,
>
> I am trying to batched get(s) on a cluster. Here is the code:
>
> List<Get> gets = ...
> // Prepare my gets with the rows i need
> myHTable.get(gets);
>
> I have two questions about the above scenario:
> i) Is this the most optimal way to do this ?
> ii) I have a feeling that if there are multiple gets in this case, on the
> same region, then each one of those shall instantiate separate scan(s) over
+
Varun Sharma 2013-02-19, 15:52
+
Nicolas Liochon 2013-02-19, 17:28
+
Varun Sharma 2013-02-19, 18:19
+
lars hofhansl 2013-02-19, 18:27
+
Nicolas Liochon 2013-02-19, 18:42
+
Nicolas Liochon 2013-02-19, 18:46
NEW: Monitor These Apps!
elasticsearch, apache solr, apache hbase, hadoop, redis, casssandra, amazon cloudwatch, mysql, memcached, apache kafka, apache zookeeper, apache storm, ubuntu, centOS, red hat, debian, puppet labs, java, senseiDB